
Zhang Zhonghan,
Lan Xijing,
Zhang Zhiyu
Instructor: Wang Jiabin

High school attached to Zhejiang
University,
Hangzhou, China

May 2021

Levels Function Name and Descriptions

Session
Starting

Greeting
attract passers-by's attention by greeting and guide them to start
the session.

Introduction
Function Overview
Detailed Description and implementation

1. Greeting and Session Starting
1.1 Human Pool Module
1.2 Throttle

2. Basic Introduction
3. Navigation

3.1 Trigger
3.2 Basic User Interface

4. Daily Suggestion
5. Simple User System

5.1 Registration
5.1.1 Main Registration Process
5.1.2 Anti-Collision

5.2 Login
6. Festival Promotion & Basic Reminder
7. Greeting Function Additional

7.1 Morning Inspiration
7.2 Weather reminder

8. Demo time simulation
8.1 By touching head
8.2 By setting up a background server

Introduction

H1

If you are a student, new to campus, you may want to quickly understand the
place of life. On campus, you may not want to be obsessed with small things, and
you may also want to have a little luck in your campus life.

If you are a school official, you may want to reduce the repetitive and
mechanized introduction done by humans and to promote special activities in
the school.

Our intelligent Campus Welcome System can meet the expectations above to a
certain extent.

Function Overview

H1

af://n2
af://n6

Levels Function Name and Descriptions

Introduction

Campus Introduction
introduce the campus's basic information in conversations

Navigation
make the navigation in multi interaction dimension

Daily Suggestion - Take meals for example
As an extension of the introduction of campus facilities, it is also
a small suggestion for daily choice

Personal
Service

Basic User System - Make a Friend

Establishing the user system through face recognition to lay a
foundation to provide personal services

Festival Promotion
Learn about campus activities through conversation

Basic Reminder
record the daily activities into the personal reminder

humanistic
concern

Morning Inspiration
Provide an inspirational quote every morning

Weather suggestions
Remind people to take an umbrella or something else after
school according to the weather tomorrow

Demonstrate
Technique

Demo time simulation
Toggle the time in the program to demonstrate the functions

Detailed Description and

implementation

H1

1. Greeting and Session Starting

H2

The robot can detect passers-by and greeting them to guide them start session.

A balance between avoiding missing the people and avoiding greeting
repeatedly to the same person should be kept. We design a mechanism as
follows.

af://n26
af://n27

Simplified Diagram

Implement in Choregraphe

1.1 Human Pool ModuleH3

Create a global list of activehumans:

When receiving the ontrack signal, if the ID (not - 1 and not in the list), add

it and call onstopped

When receiving the onlost signal, if the ID is in the list, the ID will be

removed from the list

global activeHumans

class MyClass(GeneratedClass):

 def __init__(self):

 GeneratedClass.__init__(self)

 def onLoad(self):

 global activeHumans

1

2

3

4

5

6

7

af://n34

1.2 ThrottleH3

We modified the build-in Delay box to create our Throttle box.

 activeHumans = []

 pass

 def onUnload(self):

 pass

 def onInput_onTrack(self, p):

 if p != -1 and activeHumans.count(p) == 0:

 activeHumans.append(p)

 self.onStopped()

 pass

 def onInput_onLost(self, p):

 if activeHumans.count(p) != 0:

 activeHumans.remove(p)

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

class MyClass(GeneratedClass):

 def __init__(self):

 GeneratedClass.__init__(self, False)

 def onLoad(self):

 self.coolDown = False # True for cooling

 self.delayed = []

 self.lastInput = 0

 def onUnload(self):

 self.cancelDelays()

 def cancelDelays(self):

 cancel_list = list(self.delayed)

 for d in cancel_list:

 d.cancel()

 def cleanDelay(self, fut, fut_ref):

 self.delayed.remove(fut)

 def triggerOutput(self):

 self.coolDown = False # Reset cooldown at the end of the

timer

 def onInput_onStart(self, p):

 import qi

 import functools

 if not self.coolDown: # Only if not in cooling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

af://n42

2. Basic Introduction

H2

After starting the session, pepper can answer some simple questions about the
campus, such as:

How long is the history of this school?

Who is the founder of this school?

In order to solve the hit problem better, we use the concept syntax in dialog.

3. Navigation

H2

Campus may be the area that navigation software can't cover accurately, so it's
very important to add the navigation function to the robot. For better experience,
we give directions from the three dimensions of voice, graphics and posture, so
as to ensure the accuracy and communicability of the navigation.

 delay_future = qi.async(self.triggerOutput,

delay=int(self.getParameter("Timeout (s)") * 1000 * 1000))

 self.delayed.append(delay_future)

 bound_clean = functools.partial(self.cleanDelay,

delay_future)

 delay_future.addCallback(bound_clean)

 self.coolDown = True # set cooldown to true

 self.timerOutput(p) # call onstopped instantly

 def onInput_onStop(self):

 if self.getParameter("Trigger timerOutput if cancelled")

and self.delayed:

 self.timerOutput()

 self.onUnload()

28

29

30

31

32

33

34

35

36

37

38

questions

concept:(oursch) ["这个学校" "我们学校" "浙大附中"]

concept:(qend) ["是谁" "是哪位" "是哪个" "是什么"]

u: (~oursch 的创建者 ~qend) 是丰子恺,潘天寿等明远学社成员呀

u: (~oursch 的校长 ~qend) 是申屠校长啊 $headmaster=1

u: (~oursch 有多少年了) 1947到2021,一共75年了

1

2

3

4

5

6

7

af://n45
af://n54

Show Map

3.1 TriggerH3

The event syntax in dialog is used to trigger. After triggering, the Timeline and

show web view are used to complete the indication of body actions and

graphics respectively.

3.2 Basic User InterfaceH3

Set up an HTTP server, and display the corresponding pages according to the
request parameters

A simple JavaScript code snippet:

Using front-end technology, we can also add more functions to the interface

concept:(where) ["在哪" "在哪里"]

u: (食堂 ~where) 右转上坡道，食堂在左手边 $pointRest=1

- Where is the canteen?

- Turn right up the ramp and the canteen is on the left

1

2

3

4

5

window.onload = function () {

 if (location.search === "?action=restaurant") {

 popup("去食堂", "<div id=\"map-container\"><img

src=\"./assets/map-rest.jpg\" height=300></div>");

 // call popup

 }

};

1

2

3

4

5

6

af://n56
af://n59

Picture DescriptionPicture Description

Initial state,
Every button can be clicked except time

Click to show the campus plan
it can provide some guidance even if the
dialog does not work properly

show detailed information

To facilitate the setting of server address, we exposed a global variable:

4. Daily Suggestion

H2

Provide suggestions to some unimportant and small problems in daily life. For
example, let it help decide what to eat at noon today.

After being triggered in the Dialog, the program will get the current time and the
content of the meal, and provide some suggestions.

Once triggered, the Meal Recommend process will be called to handle the

mealRcm event, and a dish is randomly selected according to the time.

global tabletServer

tabletServer = "http://my-server.com"

1

2

meal

concept:(meal) ["吃什么" "有什么好吃的" "推荐点啥好吃的"]

u: (~meal) $mealRcm=1

1

2

3

af://n81

the internal structure of Meal Recommend Diagram

The implementation of part of the Python code is as follows:

5. Simple User System

H2

We have created a user system with face recognition as the core to screen out
users who desire to interact and provide personalized services.

Registration: "Make a friend" is involved in the conversation to let the robot

learn the face

Connect: Connect through face recognition when you see you

Read and write user data: create a name-data mapping inside the module to

store and access user data

import datetime

import random

breakfast = ["葱油饼", "肉包", "土豆饼", "油条", "鸡蛋饼", "梅干菜肉饼"]

dinner = ["牛腩面", "10元套餐", "12元套餐"]

if h >= 6 and h <= 8:

 self.onStopped("可能可以试试" + random.choice(breakfast))

elif (h >= 11 and h <= 13) or (h >= 16 and h <= 17):

 self.onStopped("不妨试试" + random.choice(dinner))

elif (h >= 19 and h <= 22):

 self.onStopped("我还没去看过夜宵呢")

else:

 self.onStopped("现在食堂应该还没饭")

pass

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

af://n90

Face recognition main program

5.1 RegistrationH3

The Registration module called by the lrnFace event in the Dialog.

5.1.1 Main Registration Process

H4

During this process, we set up a lot of prompts to ensure the smooth progress of
user registration. The following is a sample dialogue:

5.1.2 Anti-Collision

H4

In order to prevent the voice recognition in Dialog from conflicting with the voice
recognition in face learning, we adopted the following process to avoid conflict.

[用户]: 交个朋友吧

[Pepper]: 好啊，交个朋友什么的，最喜欢了，你叫什么

提示交互流程开启

[用户]: 用户姓名（方便起见为李华）

[Pepper]: 是李华对吧，我要开始认人啦

提示正确听到了姓名

[Pepper}: (人脸学习中)

[Pepper]: 我记住你啦

提示成功

1

2

3

4

5

6

7

8

9

10

11

12

af://n99
af://n101
af://n106

Solve the conflict between Dialog and speech recognition

Use global process state to implement conflict avoidance

Anti-collision handling in event call

In order to prevent face recognition from being interrupted by greetings and to
prevent face recognition from being accidentally triggered during other
processes, we adopted the following solutions to avoid conflicts:

Anti-collision handling in greeting process

5.2 LoginH3

After Pepper recognizes the user, record the user's name for use by other
services. Because the use of Face Reco. for every personalized service will bring

a lot of uncontrollable factors, including but not limited to:

1. If it is a stranger, then the unrecognizable output will have to wait for 8s, but

this is a repeated attempt and can be optimized

2. The output of Face Reco. is not stable

3. Every time you add an Face Reco. box, the code-readability will decrease

We use the acquaintance pool mechanism to overcome these factors. Its data
structure is as follows. The code uses List nested Dict to describe

Its specific implementation mechanism is as follows:

af://n117

Join/update/destroy of acquaintance activity

The following code snippet implements the function of getting the last
acquaintance:

global activeFriends

maxTime = 0

lastName = ""

for info in activeFriends:

 self.logger.info("info: " + str(info))

 if info['lastNotice'] > maxTime:

 lastName = info['name']

 if lastName != "":

 self.onStopped(lastName)

 return

 else:

 self.onNoFriend()

1

2

3

4

5

6

7

8

9

10

11

12

13

Task promotion and to-do realization

6. Festival Promotion & Basic Reminder

H2

On campus, you can get recent activities in small chats with robots. If you are an
acquaintance, you can also add the corresponding items to the memo.

We use two events in the conversation to expose the entrance:

If you are an acquaintance, and the answer is yes (means you are interesting in
the festival), then the registration will be included in the to-do list.

7. Greeting Function Additional

H2

7.1 Morning InspirationH3

Judging by time, Robot will give its acquaintances a random sentence of
inspiration every morning, and in order to prevent interruption, the robot only
greet the same person once.

concept:(accept) ["好啊" "好" "行"]

concept:(actbegin) ["最近" "浙大附中" "我们学校" "最近几天"]

u: (~actbegin 有什么活动吗) 有一个科技节,在那里你可以发挥你的才华,把理想变为

现实,想要参加吗

 u1: (~accept) 好的 $festivalSpecial=1

 u2: (不想) 好吧

u: (今天有什么事情吗) $reportEvent=1

1

2

3

4

5

6

7

af://n134
af://n141
af://n142

7.2 Weather reminderH3

A weather reminder interface is reserved, and the weather API will be requested
in real time in the future for complete implementation. Below is a demo
implemented by python

import urllib2

import json

import time

import gzip

from io import BytesIO

Request

req = urllib2.Request("https://devapi.qweather.com/v7/weather/3d?

location=120,30&key=<MyAppKey>")

res = urllib2.urlopen(req)

content = res.read()

Decompress

buff = BytesIO(content)

f = gzip.GzipFile(fileobj=buff)

contentDecompressed = f.read().decode("utf-8")

Load JSON

weather = json.loads(contentDecompressed)['daily']

Match weather

tomorrow = time.strftime("%Y-%m-%d", time.localtime(time.time() +

24 * 3600))

print("明天日期: " + tomorrow)

for day in weather:

 dayStr = day['fxDate']

 weatherCode = int(day['iconDay'])

 if dayStr == tomorrow:

 print ("Weather Code: " + str(weatherCode))

 if weatherCode >= 300 and weatherCode <= 500:

 print("明天下雨，记得带伞")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

af://n145

The test is successful, and the results are as follows:

8. Demo time simulation

H2

In order to demonstrate all the time-related function of the robot (such as
Morning Inspiration), time simulation is of great necessity.

We use two global variables in implementation.

The simulation time can be calculated by only one line:

There are two ways to switch the simulation time:

8.1 By touching headH3

By adding the MiddleTactilTouched event listener to realize the cycle switching

between morning and night

code segment:

 else:

 print("明天不会下雨")

30

31

global lastSyncRealTime # Real time when last synced

global lastSyncSimuTime # Simulation time at the last

synchronization

1

2

time.time() - lastSyncRealTime + lastSyncSimuTime1

af://n150
af://n157

8.2 By setting up a background serverH3

We use Node.js to implement a simple time server and background interface to

complete the synchronization: the front end uses /getSimuTime to change the

simulation time, and Pepper uses polling /getSimuTime to complete the time

synchronization

Server-side code:

self.timeSimu = (self.timeSimu + 1) % 3

self.tts = ALProxy('ALTextToSpeech')

global lastSyncRealTime

global lastSyncSimuTime

if self.timeSimu == 0:

 self.tts.say("假装现在是早晨")

 lastSyncRealTime = time.time()

 lastSyncSimuTime = 1621549219

elif self.timeSimu == 1:

 self.tts.say("假装现在是中午")

 lastSyncRealTime = time.time()

 lastSyncSimuTime = 1621570819

elif self.timeSimu == 2:

 self.tts.say("假装现在是晚上")

 lastSyncRealTime = time.time()

 lastSyncSimuTime = 1621603219

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(function(app) {

 // init times

 let realTime = (new Date().getTime()) / 1000,

 simuTime = (new Date().getTime()) / 1000;

 // `/setSimuTime` API

 app.get('/setSimuTime', (req, res) => {

 try {

 const reqRealTime = +req.query.realTime,

 reqSimuTime = +req.query.simuTime,

 valiStr = +req.query.valiStr;

 if(!vali(

 reqRealTime.toString()

 + reqSimuTime.toString(),

 valiStr

)) {

 throw new Error("validate the request failed")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

af://n161

Pepper-side code:

 }

 realTime = reqRealTime,

 simuTime = reqSimuTime;;

 res.status(200);

 } catch (e) {

 res.status(400).end();

 }

 })

 // `/getSimuTime` API

 app.get('/getSimuTime', (req, res) => {

 res.send(JSON.stringify({realTime, simuTime}))

 res.end();

 })

})(app);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

try:

 global lastSyncRealTime

 global lastSyncSimuTime

 global tabletServer

 req = urllib2.Request(tabletServer + "/getSimuTime")

 res = urllib2.urlopen(req)

 j = json.loads(res.read().decode('utf-8'))

 lastSyncRealTime = j['realTime']

 lastSyncSimuTime = j['simuTime']

 self.logger.info("[time server] update successful" + str(j))

except:

 self.logger.warn("[time server] failed to fetch time status")

1

2

3

4

5

6

7

8

9

10

11

12

	封面
	幻灯片编号 1

	Pepper 技术文档-en
	Introduction
	Function Overview
	Detailed Description and implementation
	1. Greeting and Session Starting
	1.1 Human Pool Module
	1.2 Throttle

	2. Basic Introduction
	3. Navigation
	3.1 Trigger
	3.2 Basic User Interface

	4. Daily Suggestion
	5. Simple User System
	5.1 Registration
	5.1.1 Main Registration Process
	5.1.2 Anti-Collision

	5.2 Login

	6. Festival Promotion & Basic Reminder
	7. Greeting Function Additional
	7.1 Morning Inspiration
	7.2 Weather reminder

	8. Demo time simulation
	8.1 By touching head
	8.2 By setting up a background server

