Campus Welcome
System

Zhang Zhonghan,

Lan Xijing,

Zhang Zhiyu
Instructor: Wang Jiabin

High school attached to Zhejiang
University,
Hangzhou, China

May 2021

Introduction
Function Overview
Detailed Description and implementation
1. Greeting and Session Starting
1.1 Human Pool Module
1.2 Throttle
2. Basic Introduction
3. Navigation
3.1 Trigger
3.2 Basic User Interface
4. Daily Suggestion
5. Simple User System
5.1 Registration
5.1.1 Main Registration Process
5.1.2 Anti-Collision
5.2 Login
6. Festival Promotion & Basic Reminder
7. Greeting Function Additional
7.1 Morning Inspiration
7.2 Weather reminder
8. Demo time simulation
8.1 By touching head
8.2 By setting up a background server

Introduction

If you are a student, new to campus, you may want to quickly understand the
place of life. On campus, you may not want to be obsessed with small things, and
you may also want to have a little luck in your campus life.

If you are a school official, you may want to reduce the repetitive and
mechanized introduction done by humans and to promote special activities in
the school.

Our intelligent Campus Welcome System can meet the expectations above to a
certain extent.

Function Overview

Levels Function Name and Descriptions

, Greeting
Session
attract passers-by's attention by greeting and guide them to start

Startin
g the session.

af://n2
af://n6

Levels

Introduction

Personal
Service

humanistic
concern

Demonstrate
Technique

Function Name and Descriptions

Campus Introduction
introduce the campus's basic information in conversations

Navigation
make the navigation in multi interaction dimension

Daily Suggestion - Take meals for example

As an extension of the introduction of campus facilities, it is also
a small suggestion for daily choice

Basic User System - Make a Friend

Establishing the user system through face recognition to lay a
foundation to provide personal services

Festival Promotion
Learn about campus activities through conversation

Basic Reminder

record the daily activities into the personal reminder
Morning Inspiration

Provide an inspirational quote every morning

Weather suggestions

Remind people to take an umbrella or something else after
school according to the weather tomorrow

Demo time simulation

Toggle the time in the program to demonstrate the functions

Detailed Description and

implementation

1. Greeting and Session Starting

The robot can detect passers-by and greeting them to guide them start session.

A balance between avoiding missing the people and avoiding greeting

repeatedly to the same person should be kept. We design a mechanism as

follows.

af://n26
af://n27

Basic Throttle Start Session

Awareness
If the ID does not exist
inthe pool, trigger
human entry Only one Try face
e T greet'\ng is rec:ogn'\rtion
allowed in 10 Open dialog
) seconds

Human Pool
| Add ID to pool
e —
#5239
If there is an ID inthe
pool, trigger human left
Human Lost
#6277
Remove ID from pool

Simplified Diagram

Activated disiog

Basic Awareness

Implement in Choregraphe

1.1 Human Pool Module

Create a global list of activehumans:

e When receiving the ontrack signal, if the ID (not - 1 and not in the list), add
it and call onstopped
e When receiving the onTost signal, if the ID is in the list, the ID will be

removed from the list

1 global activeHumans

2 class MyClass(GeneratedClass):

3 def __init__(self):
GeneratedClass.__init__(self)

def onLoad(self):
global activeHumans

N O v b

af://n34

8 activeHumans = []

9 pass

10

11 def onunload(self):

12 pass

13

14 def onInput_onTrack(self, p):

15 if p != -1 and activeHumans.count(p) ==
16 activeHumans.append(p)

17 self.onStopped()

18 pass

19

20 def onInput_onLost(self, p):

21 if activeHumans.count(p) != O:
22 activeHumans.remove(p)

1.2 Throttle

We modified the build-in Delay box to create our Throttle box.

1 class MyClass(GeneratedClass):
2 def _init__(self):
3 GeneratedcClass.__init__(self, False)
4
5 def onLoad(self):
6 self.coolbown = False # True for cooling
7 self.delayed = []
8 self.lastInput = 0
9
10 def onunload(self):
11 self.cancelbelays()
12
13 def cancelbelays(self):
14 cancel_Tist = list(self.delayed)
15 for d in cancel_list:
16 d.cancel()
17
18 def cleanbDelay(self, fut, fut_ref):
19 self.delayed. remove(fut)
20
21 def triggeroutput(self):
22 self.coolbown = False # Reset cooldown at the end of the
timer
23
24 def onInput_onstart(self, p):
25 import qi
26 import functools

27 if not self.coolbown: # oOnly if not in cooling

af://n42

28 delay_future = gi.async(self.triggeroutput,
delay=int(self.getParameter("Timeout (s)") * 1000 * 1000))

29 self.delayed.append(delay_future)

30 bound_cTean = functools.partial(self.cleanbDelay,
delay_future)

31 deTay_future.addcallback(bound_cTean)

32 self.coolbown = True # set cooldown to true

33 self.timeroutput(p) # call onstopped instantly

34

35 def onInput_onStop(self):

36 if self.getParameter("Trigger timeroutput if cancelled")
and self.delayed:

37 self.timeroutput()

38 self.onunToad()

2. Basic Introduction

After starting the session, pepper can answer some simple questions about the
campus, such as:

e How long is the history of this school?

e Who is the founder of this school?

In order to solve the hit problem better, we use the concept syntax in dialog.

questions
concept: (oursch) ["IEAZEK" "HATER" WK
Concept: (qend) ["%_‘Lﬁ‘" l'%@g{jll ll/'_\Eéujlg/l\" |INE|5 ‘I‘/A\"]

u: (~oursch MElEHE ~qgend) & T 18, 1% K752 U Al ot
u: (~oursch KK ~gend) ZHEKKH $headmaster=1
u: (~oursch HZ/F7) 1947%]2021, —3L754F T

N O v AW N R

3. Navigation

Campus may be the area that navigation software can't cover accurately, so it's
very important to add the navigation function to the robot. For better experience,
we give directions from the three dimensions of voice, graphics and posture, so
as to ensure the accuracy and communicability of the navigation.

af://n45
af://n54

3.1 Trigger

The event syntax in dialog is used to trigger. After triggering, the Timeline and
show web view are used to complete the indication of body actions and
graphics respectively.

1 concept:(where) ["fEWE"™ "fEWEHE"]

2 u: (&% ~where) F¥ LIiE, EELFIL $pointRest=1

3

4 # - where is the canteen?
5 # - Turn right up the ramp and the canteen is on the Teft

3.2 Basic User Interface

Set up an HTTP server, and display the corresponding pages according to the
request parameters

IR 78U

v B
w

© roarnni

TR BR
PE-XRFR VR SRR

Show Map

A simple JavaScript code snippet:

1 window.onload = function (O {

2 if (location.search === "?action=restaurant™) {

3 popup("E&E", "<div id=\"map-container\"></div>");

4 // call popup

5 }

6 1;

Using front-end technology, we can also add more functions to the interface

af://n56
af://n59

Picture Description

fRArLAiatist

Initial state,
Every button can be clicked except time

Click to show the campus plan
it can provide some guidance even if the
dialog does not work properly

show detailed information

To facilitate the setting of server address, we exposed a global variable:

1 global tabletServer
2 tabletServer = "http://my-server.com"

4. Daily Suggestion

Provide suggestions to some unimportant and small problems in daily life. For
example, let it help decide what to eat at noon today.

After being triggered in the Dialog, the program will get the current time and the
content of the meal, and provide some suggestions.

1 # meal
2 concept:(meal) ["mzfta" "FGAAUFrZHg" "HERE SRS EFZ "]
3 u: (~meal) $mealRcm=1

Once triggered, the Meal Recommend process will be called to handle the

mealRcm event, and a dish is randomly selected according to the time.

af://n81

Hi root quy “1'“] I':L'L'C?.T‘-"l'”lj

(=)
5 =1
B3 I E3
.) Get Random

the internal structure of Meal Recommend Diagram

The implementation of part of the Python code is as follows:

O 00 N O U1 »h W N =

e el e
O Ui A WN RO

5.

import datetime
import random

breakfast = ["ZugF", "WE", "LEH", "WhE", "XEED", "HTRADE]
dinner = ["#fwiH", "10cE%", "1208E4"]

if h >= 6 and h <= 8:
self.onStopped("m g LLikil" + random.choice(breakfast))
elif ¢(h >= 11 and h <= 13) or (h >= 16 and h <= 17):
self.onstopped ("4 #ikik" + random.choice(dinner))
elif (h >= 19 and h <= 22):
self.onStopped ("FHit % LB E ™)
else:
self.onStopped ("HLTE & 5 N AZIEER™)

pass

Simple User System

We have created a user system with face recognition as the core to screen out

users who desire to interact and provide personalized services.

Registration: "Make a friend" is involved in the conversation to let the robot
learn the face

Connect: Connect through face recognition when you see you

Read and write user data: create a name-data mapping inside the module to

store and access user data

af://n90

5.1 Registration

The Registration module called by the TrnFace event in the Dialog.

5.1.1 Main Registration Process

og | ¢

Face recognition main program

During this process, we set up a lot of prompts to ensure the smooth progress of
user registration. The following is a sample dialogue:

T [HPT: e

2 [Pepper]: 4fWi, AR AW, wERT, W4
3 # R HRENE

4

5 [HRF]: APds i fEik L ovZE)

6 [Pepper]: ZZAEXIE, FREFFIHIN AWM
7 # PORIEWWE TS

8

9 [Pepper}: (AME2E>IH)

10

11 [Pepper]: FRicAEIRuMi

12 # PRI

5.1.2 Anti-Collision

In order to prevent the voice recognition in Dialog from conflicting with the voice
recognition in face learning, we adopted the following process to avoid conflict.

af://n99
af://n101
af://n106

Restart Dialog

‘Wait till dialog stop Main Process

Functions

Stop Dialog when trigger the event

Solve the conflict between Dialog and speech recognition

In order to prevent face recognition from being interrupted by greetings and to

prevent face recognition from being accidentally triggered during other
processes, we adopted the following solutions to avoid conflicts

Start Session Current Process Change State
Call \\
|
Process Call '

Write new state
to variable
‘| Registration
|

\
\
\.‘ Available
| |
Learn Face | | available when process
‘\I Continue .‘ stop
\ l ‘ Process
\
|
Other Process \

Call

/
— Available? ;’ Filter

J

Use global process state to implement conflict avoidance

Anti-collision handling in event call

Anti-collision handling in greeting process

5.2 Login

After Pepper recognizes the user, record the user's name for use by other
services. Because the use of Face Reco. for every personalized service will bring

a lot of uncontrollable factors, including but not limited to:

1. If it is a stranger, then the unrecognizable output will have to wait for 8s, but

this is a repeated attempt and can be optimized

2. The output of Face Reco. is not stable

3. Every time you add an Face Reco. box, the code-readability will decrease

We use the acquaintance pool mechanism to overcome these factors. Its data
structure is as follows. The code uses List nested Dict to describe

Active Acquaintance

Track ID Last Track Time

19:47:02

Name

Alice

19:47:21

Bob

+* +H
o (8]
] [N
=] =
=l de}

Its specific implementation mechanism is as follows:

af://n117

Face Reco. \ f there Is no Active Friends Other
\ such person in Op. Functions
ame the pool, register
\‘ into the pool
Basic Tzl Append Activity Ad.
Awareness / e
{

/ [

tone

Update

Human Track /

If this person already exists in the
pool, Update last track time

The most recent

Human Lost \‘. Delete the
‘\ acquaintance
\ according to the ID
_—
Remove
— >
Delete acquaintances who are
Ti mer inactive for a period of time

Basic Awareness

o)
| Keep Friend Ell Update :
.:l El\é\th 0=
@

|

"
stroy conn. wher -
Reg. Frie

Integrate ID and name
Join acquaintances

Destroy conn. when timeout

Join/update/destroy of acquaintance activity

The following code snippet implements the function of getting the last

acquaintance:
1 global activeFriends
2 maxTime = 0
3 TastName = ""
4 for info in activeFriends:
5 self.logger.info("info: " + str(info))
6 if info['TastNotice'] > maxTime:
7 TastName = info['name']
8
9 if lastName != "":
10 self.onStopped(lastName)
11 return
12 else:
13 self.onNoFriend()

6. Festival Promotion & Basic Reminder

On campus, you can get recent activities in small chats with robots. If you are an
acquaintance, you can also add the corresponding items to the memo.

We use two events in the conversation to expose the entrance:

wons—=n

concept: (accept) ["gfFm"™ "#r"™ "47"]
concept: (actbegin) ["&Hix" "Wr K" AT "HETJLR"]
u: (~actbegin HAAWEING) H—MEHE, B BART LLURIEIRI A 4, oA AR
P, AR E 2 g
ul: (~accept) Ff) $festivalspecial=1l
u2: A4 4rm

w N =

N O v B

u: (REMHAEEY) $reportEvent=1

If you are an acquaintance, and the answer is yes (means you are interesting in
the festival), then the registration will be included in the to-do list.

Get current person
El s
]
s
\

Task promotion and to-do realization

7. Greeting Function Additional

7.1 Morning Inspiration

Judging by time, Robot will give its acquaintances a random sentence of
inspiration every morning, and in order to prevent interruption, the robot only
greet the same person once.

af://n134
af://n141
af://n142

inspiration

7.2 Weather reminder

A weather reminder interface is reserved, and the weather API will be requested
in real time in the future for complete implementation. Below is a demo
implemented by python

1 dmport urllib2

import json

import time

import gzip

from io import BytesIO

Request

req = urllib2.Request("https://devapi.qweather.com/v7/weather/3d?

location=120, 30&key=<MyAppKey>")

9 res = urllib2.urlopen(req)

10 content = res.read()

11

12 # Decompress

13 buff = BytesI0o(content)

14 f = gzip.GzipFile(fileobj=buff)

15 contentbecompressed = f.read().decode("utf-8")

16

17 # Load JSON

18 weather = json.loads(contentDecompressed)['daily']

19

20 # Match weather

21 tomorrow = time.strftime("%Y-%m-%d", time.localtime(time.time() +
24 * 3600))

22 print("HRHE: " + tomorrow)

23 for day in weather:

00O N O L1 A W N

24 daystr = day['fxbate']

25 weatherCode = int(day['iconbay'])

26 if daystr == tomorrow:

27 print ("weather Code: " + str(weatherCode))
28 if weathercCode >= 300 and weathercCode <= 500:

29 print("HIE TR, 0"

af://n145

else:
print("HRKAESTFW")

The test is successful, and the results are as follows:

Demo Code " HTTP Response

8. Demo time simulation

In order to demonstrate all the time-related function of the robot (such as
Morning Inspiration), time simulation is of great necessity.

We use two global variables in implementation.

global TastSyncRealTime # Real time when last synced
global TastSyncSimuTime # Simulation time at the Tast
synchronization

The simulation time can be calculated by only one line:

time.time() - lastSyncRealTime + TastSyncSimuTime

There are two ways to switch the simulation time:

8.1 By touching head

By adding the MiddleTactilTouched event listener to realize the cycle switching

between morning and night

code segment:

af://n150
af://n157

O 00 N O vi h W N B

P R R R R R R R R
© oo ~NO WU A WNR O

self.timeSimu = (self.timeSimu + 1) % 3

self.tts = ALProxy('ALTextToSpeech')

global TastSyncRealTime
global TastSyncSimuTime

if self.timeSimu ==
self.tts.say ("EREIAZ TR
TastSyncRealTime = time.time()
TastSyncSimuTime 1621549219
elif self.timeSimu ==
self.tts.say ("EEEIA LT
TastSyncRealTime = time.time()
TastSyncSimuTime = 1621570819
elif self.timeSimu ==
self.tts.say ("B AN ™)
TastSyncRealTime = time.time()
TastSyncSimuTime = 1621603219

8.2 By setting up a background server

We use Node. js to implement a simple time server and background interface to

complete the synchronization: the front end uses /getSimuTime to change the

simulation time, and Pepper uses polling /getSimuTime to complete the time

synchronization

Server-side code:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

(function(app) {

// init times
let realTime = (new Date().getTime()) / 1000,
simuTime = (new Date().getTime()) / 1000;

// ~/setSimuTime API
app.get('/setSimuTime', (req, res) => {
try {
const reqRealTime
reqSimuTime

+req.query.realTime,

+req.query.simuTime,
valistr = +req.query.valistr;

if(lvali(
reqrealTime.toString()
+ reqSimuTime.toString(),
valistr

DDARI

throw new Error("validate the request failed")

af://n161

20 }

21

22 realTime = reqgRealTime,
23 simuTime = reqSimuTime;;
24 res.status(200);

25 } catch (e) {

26 res.status(400).end();
27 }

28 B

29

30 // ~/getSimuTime API
31 app.get('/getSimuTtime', (req, res) => {

32 res.send(JSON.stringify({realTime, simuTime}))
33 res.end();

34 b

35

360 P (app);

Pepper-side code:

1 try

2 global TastSyncRealTime

3 global TastSyncSimuTime

4 global tabletServer

5 req = urllib2.Request(tabletServer + "/getSimuTime")
6 res = urllib2.urlopen(req)

7 j = json.loads(res.read().decode('utf-8"))

8 TastSyncRealTime = j['realTime']

9 TastSyncSimuTime = j['simuTime']
10 self.logger.info("[time server] update successful" + str(j))
11 except:

12 self.logger.warn("[time server] failed to fetch time status')

	封面
	幻灯片编号 1

	Pepper 技术文档-en
	Introduction
	Function Overview
	Detailed Description and implementation
	1. Greeting and Session Starting
	1.1 Human Pool Module
	1.2 Throttle

	2. Basic Introduction
	3. Navigation
	3.1 Trigger
	3.2 Basic User Interface

	4. Daily Suggestion
	5. Simple User System
	5.1 Registration
	5.1.1 Main Registration Process
	5.1.2 Anti-Collision

	5.2 Login

	6. Festival Promotion & Basic Reminder
	7. Greeting Function Additional
	7.1 Morning Inspiration
	7.2 Weather reminder

	8. Demo time simulation
	8.1 By touching head
	8.2 By setting up a background server

