
SKUBA-Jr 2021 Team Description Paper
1st Akira Techapattaraporn

Dept. of Electrical Engineering
Kasetsart University
Bangkok, Thailand

akira.te@ku.th

2nd Runchida Bunamorn
Dept. of Electrical Engineering

Kasetsart University
Bangkok, Thailand
runchida.b@ku.th

3rd Kanjanapan Sukvichai
Dept. of Electrical Engineering

Kasetsart University
Bangkok, Thailand
fengkpsc@ku.ac.th

Abstract—The purpose of this paper is to describe the service
robot named Angus from the SKUBA-Jr team for the 2021
World RoboCup@Home Education Online Challenge. Angus was
assembled from Kobuki TurtleBot2 platform with a 5 degrees of
freedom manipulator, a 2D Lidar scanner and a depth camera.
The software applied on Angus, for instance: image processing,
speech recognition, and navigation and localization, is based
on C++ and Python under ROS environment. The convolution
neural network, YOLOv4-Tiny, is used for objects detection.
PocketSphinx speech recognizer was utilized for speech synthesis.
The robot manipulator was controlled by using Moveit! library
with the custom configuration and custom path planing program.
In addition, ROS packages had a significant role on the navigation
scheme and mission states planner. In summary, all the items
mentioned was constructed, combined and customized for our
autonomous mobile robot to achieve an exquisite performance.

Index Terms—Mobile Robot, Robot Manipulator, Service
Robot, Lidar, ROS

I. INTRODUCTION

SKUBA-Jr team has been participating in the
RoboCup@Home Education Competition since 2012 and
was the winner of RoboCup@Home Education Competition
2019 at Sydney, Australia. The team is based at the Faculty
of Engineering at Kasetsart University, Thailand, and
consists of the undergraduate and graduate students adviced
by professional faculty members. Our team has a strong
motivation to develop a practical interpretation to be part
of the World RoboCup and service robot advancement. By
participating in the World RoboCup@Home League, our
contribution would be evaluated through the certain situations,
which elevate the development of our skills and knowledge
in return.

The following sections consist of robot overview design,
software overview, robot perception, navigation, arm manipu-
lation, and performed tasks.

II. HARDWARE DESIGN

A. Robot Design

The structure of Angus is presented in Figure 1. Angus was
built upon the Kobuki TurtleBot 2 base with two differential
drive wheels. The modification of Angus was to incorporate
more layers to the robot base in order to expand the capacity

Fig. 1: Robot Design

for the additional hardware such as onboard computer, ma-
nipulators and sensors. A 3D printed PLA plastic shell was
made to cover the Angus body in order to make a friendly
appearance as it was meant to be a service robot. The sensors
used in the system are a low cost 2D laser scanner (Lidar)
and the Intel RealSense D415 mounted to the robot head
for robot perception. On the platform of the first layer, a
lidar is attached for mapping and navigation. A computer and
some other miscellaneous items were settled on the next level.
Lastly, a microphone was attached to the top of the head for
sound receiving.

B. Robot Manipulator

The robot arm was constructed from 3 revolute joints to
achieve 3 degree of freedom (DOF) as shown in figure 2a.
The end effector was constructed from 2 servo motors for two
extra DOF. The materials used was folded aluminum sheets
and some 3D printed parts, for weight minimization. Each
joint was manipulated by a Dynamixel servo which can have
8.4 Nm. maximum torque at 12 V, 5.2 A.



C. Robot Head

The design of the robot head was to imitate the movement
of head in human. With 2 degree of freedom, the robot head
can realize the similar movement of rotation and extension as
the human head does. The components used are 2 Dynamixel
servos with 8.4 Nm. torque at 12 V, 5.2 A, and a plastic shell
to cover for an amiable appearance.

(a) Robot Arm (b) Robot Head

Fig. 2: Robot Hardware

III. SOFTWARE DESIGN

The software architecture is shown in Figure 3. It is operated
by ROS and could be broken down into five main sections:
sensor, navigation, robot perception, robot arm, and mission
planner. The sensors module consists of lidar, depth camera,
and microphone. The data obtained from the lidar is committed
to the navigation for localization and trajectory planning. The
microphone and depth camera are responsible for receiving
input for the robot perception module. The mission planner
should be performed after attaining the data from the robot
perception, which would execute specific tasks such as running
the robot arm as well as acquiring the arm status, utilizing
navigation, or synthesizing speech through certain software.

A. Robot perception

Fig. 4: Objects Detection Output

1) Objects Detection: The objects detection system uti-
lizes the Convolutional Neural Network (CNN) to detect and
classify objects. The real time neural network, YOLOv4-tiny
running with darknet-53 architecture framework was applied.

The YOLOv4-tiny is the compressed version of YOLOv4
which propose by Alexey Bochkovskiy, Chien Yao Wang and
Hong Yuan Mark Liao [1] has the simpler network structure.
The YOLOv4-tiny takes two-stage approach in adversarial
training. In the first stage, it alters the original image to create
the deception if there is no desired object on the image. For the
second stage, the adversarial modified image will be detected
by the trained network. The result of the object detection is
shown in Figure 4

Fig. 5: Face Recognition Flow

2) Face Recognition: In order to perform the face recog-
nition, the image is encoded by using the CNNs model to
segment the face from background. The segmentation then
passing through another CNNs model for facial feature ex-
traction and the data is aligned and collected in array. The
collected data will be used as a norm of the original image
and is used to compare with the desired image that has been
encoded, and the face is considered to be recognized if the
encoded value is not greater than tolerance.

3) Speech Recognition: PocketSphinx [2] which is an
offline light weight speech recognizer library written in C
programming language was used for speech recognition. This
library is one of the speech recognition tools kit called CMUS-
phinx developed by Carnegie Mellon University. PocketSphinx
allows customization of the language model, phonetic dic-
tionary, and acoustic model those entities are combine in
an engine to recognize speech.To handle the speech data
obtained from the audio source, Gstreamer library which is
the streaming media framework was utilized to send the data
to the PocketSphinx via an audio pipeline.

4) Seat Detection: The seat detection was developed based
on the implementation of the Point Cloud Library (PCL) in
ROS. The PCL is a C++ library for 2D/3D image and point
cloud processing [3] which contain state-of-the-art algorithms
such as filtering, feature estimation, surface reconstruction,
model fitting, and segmentation. The approach for seat de-
tection concerns the plane model segmentation and other
filters along with pcl ros [4], a ROS package which provides
interface tools for joining ROS system to the PCL. Firstly,
the inputted point clouds were down sampled using the Voxel
Grid filter. Then, they were segmented using a plane model
to detect a planar surface since the seats are flat via Random
sample consensus or RANSAC algorithm. The output from the
processed point clouds were converted to image, then, verified



Fig. 3: Software Diagram

with the data obtained from the object detection through the
ROS package pcl ros.

Fig. 6: Navigation Localization and Trajectory Planning

B. Navigation

The navigation scheme based on ROS Navigation stack [5]
was used, which consists of two following items: localization
and trajectory planning, as shown in figure ??. The localization
is based on AMCL algorithm [6] which indicates the position
of the robot corresponding to its certain surroundings, for this
reason, odometry, laser scan data, and a map are required.
Odometry which approximates the position and the velocity
of the robot is acquired from robot’s wheels. Laser scan data
is the distance between the robot and its surroundings data

published by sensors such as laser, camera, or infrared. In this
case, Lidar was used to attain the data. Finally, a map can be
obtained by mapping process— the procedure of constructing
spatial model according to the scenery, for instance, SLAM.
On the other hand, trajectory planning consists of global path
planning and local path planning. The global planner concerns
the optimal path, while local planner calculates and gener-
ates suitable waypoints regarding the obstacles. When both
mapping and localization are complete, the navigation can be
executed efficiently along with the ROS move base package
[7] to achieve the goal through the robot’s base controller
which receives velocity commands from the navigation. The
package also included action for the robot to relocate safely
without colliding to the obstruction.

C. Mission States Planner

Since our autonomous robot is required to do designated
tasks, the model-based task planning, state machine is ma-
nipulated. In this case, SMACH [8], a ROS-package is used
to allow the programmer to execute the control of robots
easily. The library consists of two main interfaces: States
and Containers. In SMACH, a State is defined as the local
state of execution corresponding to the system performing
a certain task, meanwhile, containers are collections of one
or more states. A SMACH state machine could be illustrated
into a diagram hierarchically, where nodes [9] are the states
of execution and edges are the transitions of each node
corresponding to its outcome, as shown in Figure 7.



Fig. 7: ROS SMACH Viewer Example

Fig. 8: Robot Arm Software Diagram

D. Robot Manipulator

To manipulate the robot arm for moving the object or
pointing the arm’s end effector to the specific location, the
Moveit! library, the opensource robotics manipulator platform,
was utilized. Moveit! combines four main functions of the
robot manipulator which are a motion planning, collision
checking, trajectory processing and motion executing, thus, the
robot arm motion task can be achieved easily. The trajectory
for each joint which is calculated from Moveit! library is sent
to the dynamixel servos via the dynamixel controller package
using ROS actionlib protocol. The robot arm software diagram
is shown in Figure 8.

IV. PERFORMING TASKS

The task chosen was Find My Mates, based on the compe-
tition task according to the rules 2021. The objective of this
task focuses the efficiency of vision by obtaining the location
and the description of the party guest by just knowing the
guests’ names. The procedure is referred to algorithm 1.

ACKNOWLEDGMENT

This project would not have been possible without the
financial support from our professor, and the hard work and
dedication of our team members.

REFERENCES

[1] A. Bochkovskiy, C. Wang and H. Liao, YOLOv4: Optimal Speed and
Accuracy of Object Detection. 2020.

[2] Huggins Daines, David Kumar, M. Chan, A. Black, A.W. Ravishankar,
M. Rudnicky, Alexander. (2006). Pocketsphinx: A Free, Real-Time Con-
tinuous Speech Recognition System for Hand-Held Devices. 1. I - I.
10.1109/ICASSP.2006.1659988.

Algorithm 1 Find My Mates

Initialized state to Start State
for Start State do

Listen to start command
if hear start now then

Go to Get Name State
end if

end for
for Get Name State do

Listen to a name
if hear a name then

Go to Detect Person State
end if

end for
for Detect Person State do

Walk to the living room
Detect the selected person
if can detect the selected person then

Go to Report State
end if

end for
for Report State do

Go back to the first position
Report the guest information
Listen to a name
if hear a name then

Go to Start State
end if

end for

[3] R. B. Rusu and S. Cousins, ”3D is here: Point Cloud Library (PCL),”
2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 1-4, doi: 10.1109/ICRA.2011.5980567.

[4] ”pcl ros - ROS Wiki”, Wiki.ros.org, 2021. [Online]. Available:
http://wiki.ros.org/pcl ros. [Accessed: 22- May- 2021].

[5] ”navigation - ROS Wiki”, Wiki.ros.org, 2020. [Online]. Available:
http://wiki.ros.org/navigation. [Accessed: 23- Mar- 2020].

[6] D. Fox, W. Burgard, F. Dellaert and S. Thrun, ”Monte Carlo Lo-
calization: Efficient Position Estimation for Mobile Robots”, pp. 343-
349, 1999. Available: https://www.aaai.org/Papers/AAAI/1999/AAAI99-
050.pdf. [Accessed 23 March 2020].

[7] ”move base - ROS Wiki”, Wiki.ros.org, 2020. [Online]. Available:
http://wiki.ros.org/move base. [Accessed: 23- Mar- 2020].

[8] N. Hudson et al., ”Model-based autonomous system for performing
dexterous, human-level manipulation tasks”, Autonomous Robots, vol.
36, no. 1-2, pp. 31-49, 2013. Available: 10.1007/s10514-013-9371-y
[Accessed 18 June 2020].

[9] ”Nodes - ROS Wiki”, Wiki.ros.org, 2020. [Online]. Available:
http://wiki.ros.org/Nodes. [Accessed: 18- Jun- 2020].


