Robocup@Home Education
2021 Technical Paper

UBC Open Robotics

Contents
1 Introduction 1
2 Person Tracking 1
3 Pose Recognition 2
4 Object Detection 3
4.1 Furniture Detection 4
4.2 BagDetectiono 4
5 Speech Recognition 5
6 Age and Gender Prediction 5
6.1 Age Prediction 5
6.2 Gender Prediction 6
7 Arm Navigation 7
8 SLAM Navigation and Localization 8
9 Integration 9

1 Introduction

The Robocup@Home Education challenge is comprised of three tasks - Carry
my Luggage, Find My Mates, and Receptionist - which our team has broken
down into several software challenges which then required integration with
the hardware - a Turtlebot2 with a PhantomX Pincher robot arm.

2 Person Tracking

The Person Tracker module uses the Deep SORT algorithm and a modified
tiny-YOLOv4 model trained on the COCO dataset (that only contains the

“person” label) to identify any humans in the frame of either a video or a live
webcam. Once a person is identified, a bounding box is drawn around them
alongside an identifier number; this number is used to distinguish different
individuals.

The Person Tracker has a mAP (mean average precision) of 95.553%.
In testing, the tracker is able to accurately track an individual for up to 20
minutes without a significant drop in accuracy. The individual is also able
to leave the frame for up to 25 seconds before the tracker will no longer be
able to match people entering the frame to their previous ids. The tracker
runs at an average of 20 FPS on a Ryzen 5 3600 CPU. The primary flaw of
the tracker is the effect of low framerates on its performance; under these
conditions the tracker struggles to re-detect or even perform basic tracking if
the individual is too fast or the algorithm takes too long to process a frame.

Figure 1: Example of Person Tracking in a Basketball Scene. The model
successfully keeps track of each person’s id, even if they move out of frame
for a small duration.

3 Pose Recognition

The Pose Recognition module combines person tracking with a classifica-
tion model to perform pose recognition on people in photos, a video, or
live webcam footage. The person tracker identifies people in the input and
creates a bounding box for them, which is then passed into the model. The
classification model uses image classification to distinguish between people
standing and sitting. The person tracker uses YOLOv3 and the model was

trained on a filtered version of the COCO dataset containing only images
with the “person” label.

1: Standing

N AO30TICS

(a) Sitting Pose (b) Standing Pose

Figure 2: Pose Recognition on video of person sitting down.

Performance-wise, the classification model is quite accurate. From test-
ing, the only erroneous predictions came from images in which the target’s
legs were not at all visible in the image. The module runs at a maximum
of 8 FPS for live webcam input, and processes approximately 10 images per
second.

4 Object Detection

Object detection is an important functionality the pipeline needs to have.
We separated the task into the different types of object detection so we
could develop them in parallel. These are furniture detection - which allows
the system to describe a person’s location relative to furniture around them,
and bad detection - which is required for the Carry My Luggage task.

4.1 Furniture Detection

The Furniture Detection module can be used to detect three classes of fur-
niture in an input image, namely, chair, table and sofa. It has been trained
using a tiny-YOLOv3 model. The dataset used for training/testing purposes
consists of roughly 1500 images (500 per class) with a mix of simple, easy
to identify images taken from datasets on Kaggle.com, and slightly more
complex images taken from the COCO dataset. Upon selection, the images
were manually labeled with bounding boxes around the objects of interest.

The final mean Average Precision (mAP) of the trained model was 82%
with a test loss of 0.71. The model accurately detects objects in images at
a decent speed, but has trouble detecting objects in complex images (for
example, many chairs instead of only one, or a piece of furniture partially
obstructed by another object).

4.2 Bag Detection

Similar to furniture detection, bag detection is an object detector which
aims to locate bags given a camera image as input. Based on the tiny
YOLOv4 architecture, it was trained using the darknet framework on the
MS COCO database, which was filtered to include only relevant classes.
Training was performed on an RTX3070 GPU for around 7 hours. The best
mAP@O0.50 was 31%, which seems quite low, however in practice this mAP
was satisfactory. The low mAP is suspected to come from the immense
variety of images present in the COCO dataset, several of which are edge
cases and difficult to detect.

(a) Furniture Detection (b) Bag Detection

Figure 3: Object Detection. a) Furniture detection example. b) Bag detec-
tion working despite low mAP during training.

5 Speech Recognition

The Speech Recognition module uses Vosk, an offline open source toolkit, to
enable speech recognition. It offers functions to transcribe text from audio
captured by a microphone in real-time, and uses a lightweight LibriSpeech
model to allow speech-to-text transcription with a low word error rate of
9.85% and latency of 0.15s. For our project, we configure the module to
initiate speech recognition upon using desired wake words.

For the purposes of the tasks we are tackling, this module has to extract
entities from the transcripts. This requires us to parse and tag the recognized
words against a model to precisely identify desired entities. In our case,
we trained a language processing model based on NLTK’s Stanford NER
classifier on a training set corpus for named entities (obtained from Kaggle
and modified to our needs). This is used to extract names of people from
natural speech responses. We also trained another model with a small set of
training examples (approximately 500) about drinks and beverages to allow
us to identify any drink mentioned in a natural speech response.

Lastly, to allow our robot to interact with the end users, we use the
pyttsx3 library to enable text-to-speech. This library provides us the ability
to use offline text-to-speech as well as provides configuration settings to
adjust the robots voice, volume and speech rate.

Although this module performs well and achieves worthwhile results, we
are still challenged by a few issues. This includes the inability to recognize
uncommon names, and occasionally falsely predict drinks due to the use of
a crude entity extraction model produced from a very small set of training
examples.

6 Age and Gender Prediction

6.1 Age Prediction

The age and gender prediction model is based on the paper “Age and Gender
Classification using Convolutional Neural Networks” by Gil Levi and Tal
Hassner. The age prediction returns the top 2 predictions among eight age
groups, ‘(0, 2)".(4, 6)’,’(8, 12)’,’(15, 20)’,’(25, 32)’,’(38, 43)’,’(48, 53)’,’(60,
100)’. The output is in the form of ‘Guess @ 1 age group with prob of _’
and ‘Guess @ 2 age group with prob of __’. These details are specific but
not enough for our task.

We noticed that the age group labels contain gaps between each one

(there is no 13 or 14). Since predicting the subject’s age using only integers

can be inaccurate in some cases, we decided to add a string description to
accompany the prediction output. We describe someone with the prediction
of age (8,12) as a ‘teenager’, that way if the subject is actually 13 or 15, the
term ‘teenager’ can cover the slightly mislabeled cases, as well as when the
subject’s age falls within the gaps. Accordingly, we assigned ‘toddler, kid,
teenager, young adult, adult, middle age, and elderly’ to each age group.

In order to rank the subjects’ ages, we implemented a new parameter
called age_est_2. At first, we planned to rank the age group and then its top
prob separately to get the oldest person. It is obviously slow. Later we tried
to compare age_est = upper_level_age * prob, which is the first parameter
we’ve come up with. We noticed a problem with this parameter existing in
such cases: subject A was labeled (25, 32) with prob = 0.57, B was labeled
(15, 20) with prob = 0.94. A should be ranked older than B, but instead
the age_est of A = 32 * 0.57=18.23 and age_est of B = 20 *0.94=18.75.
Parameter age_est allows subjects with higher prob in lower age groups to
be ranked first, and that’s not what we want.

Age est_2 = guess@l age * prob + guess@2 age * prob. Parameter
age_est_2 solved the cases like subjects AB mentioned above. To get the
best ranking results, ideally, we can keep adding all the (guess * prob) till
the 8th guess, but age_est_2 is already accurate enough for our tasks. In
general, the age prediction has slightly lower accuracy in middle-age groups
(38, 43) prediction, they tend to get mislabeled into younger age groups.
Other age groups’ predictions are accurate.

*

6.2 Gender Prediction

Gender prediction outputs the higher probability of the two (Male, Female).
A very important factor in gender prediction is hair length. For female
subjects, if there is no hair or dark material placed in the area close to the
face and directly below the ear, it can be easily misclassified into males.
Situations like this include when females tie up the hair to the back. For
males it’s the counter effect: if male subjects have longer hair and it’s below
the ear, it can be misclassified into females. Interestingly, makeup and
beards are not among the important factors for classification.

The accuracy of the prediction depends on the quality and the lighting of
the input. Both predictions run on image input, using TensorFlow 1.15 and
a CNN model. The robot camera does not have a very high resolution, which
could bring down the accuracy. We will train the model with low-resolution
datasets for improvements.

The guest is an adult, female, age from (25, 32)
Age_est_2 = 26.40

The guest s an adult, male, age from (25, 32)
Age_est_2=17.89

Guess @ 1(25, 32), Guess @ 1 (25, 32), Guess @ 1 (25, 32),
prob =0.83 prob = 0.52 prob = 0.99
Guess @ 2 (15, 20), prob | Guess @ 2 (15, 20), Guess @ 2 (15, 20),
=016 prob = 0.47 prob = 0.01

Guess @ 1M, prab = Guess @ 1F, prob = Guess @ 1M, prob=
1.00 1.00 1.00

(a) (b)

Figure 4: Age and Gender Prediction. a) Guess 1 is the most probable age
range given, and the gender prediction is labelled with M for Male and F
for Female b) Example of how age_est_2 can improve age prediction

7 Arm Navigation

The Arm Navigation module uses a ROS package called Movelt! to control
the arm’s navigation and object manipulation properties. Using its powerful
capabilities, we were able to program the arm to attain poses such as rest-
ing, carrying, dropping off and waving. One component of Movelt! that we
found very useful was its ability to compute inverse kinematics (IK). When
given the desired pose for the arm, we need a way to calculate the specific co-
ordinates for each joint (ie. the IK), which becomes exceedingly complicated
as the number of joints increases. The Movelt! package takes care of this
by computing the complex, low-level IK calculations, using the Kinematics
and Dynamics Library from the Orocos Project. The implementation uses
a numerical method for the computation.

The Movelt! Interface itself offers a simple, step-by-step way to plan
and test arm poses. First, we build a description of our robot’s arm by
defining its joints, gripper and linking components. Then, by specifying
certain positions for each joint, we can visually create pre-planned poses for
the arm, as seen below in Figure 1. Movelt!’s backend would then attempt
to calculate the IK for us and give us the solution if the pose we had defined
was possible given the arm’s physical constraints. The joint coordinates for
each pose were then stored into a configuration file.

The gripper state was published to the gripper_state topic. To determine

5 Movelt Setup Assistant

Robot Poses

Figure 5: Pre-planned waving pose

which pose to move to, the arm navigation node subscribed to the arm_pose
topic.

8 SLAM Navigation and Localization

Our SLAM Navigation and Localization module was done using the turtle-
bot_navigation stack from ROS. The stack gets sensor information from our
robot’s astra camera as a sensor, which gets published over sensor_msgs/LaserScan
or sensor_msgs/PointCloud messages. For the mapping, odometry informa-
tion was published using tf and nav_msgs/Odometry message. Here we make
use of the geometry/msg Twist to facilitate the movement of the robot in the
real world. The base controller has a node that subscribes to the “cmd_vel”
node that converts velocity into commands for the motor. A person is fol-
lowed by repeatedly getting the depth and angle information of the person
with respect to the robot and sending repeated movement commands ac-
cordingly. Movement is adjusted using a p controller where we consider the
robot to be the plant and with a desired distance between person and a
desired angle, 0 degrees, we repeatedly check the error and use this error in
depth and angle to adjust the movement. Navigating to a desired location
in the map is performed using the move_base node. The move_base node
links together a global and local planner to accomplish its global navigation
task.

(a) PID controller (b) Mapping using Lidar scan

Figure 6: Navigation. a) Using a PID controller to steer autonomously
towards targets b) Using a map constructed from Lidar-like data to go to
target locations

9 Integration

The integration of all software modules with the hardware components were
facilitated using ROS (Robotic Operating System). ROS’s APIs were used
to simplify the amount of code needed to be implemented to control the
Turtlebot2 which we are using for the Robocup@Home Education compe-
tition. For example, as mentioned earlier, the Movelt! Motion Planning
Framework, embedded in ROS could be easily used for robot control, 3d
perception, and collision checking. Other tools such as Rviz and Gazebo
also makes it easy to visualise and simulate the robot’s operation, which is
especially useful during the current global pandemic

Our project’s integration revolved around incorporating three important
design decisions.

Firstly, we created a Turtlebot_wrapper which wraps all nodes having
to do with the robot. By creating this we are able to offer higher level
functionality such as ‘follow_person’. By setting the state of the turtlebot
wrapper to ‘follow’ the wrapper will automatically subscribe to the necessary
nodes: for example, PersonTracking mentioned above and the callback will
send appropriate geometry_msgs.msgs.Twist messages in accordance with
the PID controller we implemented.

Secondly, we incorporated all modules that we developed into either ROS

nodes / services or importable packages. Trained weights are stored accord-
ing to a standardized file structure, so that these applications can be easily
deployed to any system. In an effort to make integration frictionless and
modularized, we ensured that any individual module had clear endpoints
and well-defined inputs and outputs (commonly in JSON format). For ex-
ample, we ensured that all object detectors that we developed which output
bounding boxes all used the same format for the boxes: x_center, y_center,
width, height. In addition, all these dimensions are normalised between 0
and 1 in relation to the size of the image used. So, even if the image needed
to be resized for some application, these parameters could still be easily
used.

Finally, by realising the first two items, we are then able to write a set of
completely decoupled scripts for running through the Robocup@HomeEducation
tasks. Subtasks such as text to speech can be imported when necessary and
other more frequently repeated subtasks such as person following can be run
as a rosnode, which can be polled or subscribed to.

Throughout all this, ROS is used as the platform which handles message
queues, timing and interaction with hardware drivers. By interfacing across
ros topics we were also able to use modules written using different versions
of Python or Python libraries.

10

